Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Endocrinol Diabetes Metab ; 7(3): e473, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38597269

RESUMEN

BACKGROUND: Previous meta-analyses have shown mixed results regarding the association between eating disorders (EDs) and type 1 diabetes mellitus (T1DM). Our paper aimed to analyse different EDs and disordered eating behaviours that may be practiced by patients with T1DM. METHODS: A literature search of PubMed, Scopus and Web of Science was conducted on 17 January 2023, using the key terms "T1DM," "Eating Disorders" and "Bulimia." Only observational controlled studies were included. The Revman software (version 5.4) was used for the analysis. RESULTS: T1DM was associated with increased risk of ED compared with nondiabetic individuals (RR = 2.47, 95% CI = 1.84-3.32, p-value < 0.00001), especially bulimia nervosa (RR = 2.80, 95% CI = 1.18-6.65, p-value = 0.02) and binge eating (RR = 1.53, 95% CI = 1.18-1.98, p-value = 0.001). Our analysis has shown that increased risk of ED among T1DM persisted regardless of the questionnaire used to diagnose ED; DM-validated questionnaires (RR = 2.80, 95% CI = 1.91-4.12, p-value < 0.00001) and generic questionnaires (RR = 2.03, 95% CI = 1.27-3.23, p-value = 0.003). Prevalence of insulin omission/misuse was 10.3%; diabetic females demonstrated a significantly higher risk of insulin omission and insulin misuse than diabetic males. CONCLUSION: Our study establishes a significant and clear connection between EDs and T1DM, particularly bulimia and binge eating, with T1DM. Moreover, female diabetics are at higher risk of insulin misuse/omission. Early proactive screening is essential and tailored; comprehensive interventions combining diabetes and ED components are recommended for this population, with referral to a specialised psychiatrist.


Asunto(s)
Bulimia , Diabetes Mellitus Tipo 1 , Trastornos de Alimentación y de la Ingestión de Alimentos , Masculino , Humanos , Femenino , Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 1/epidemiología , Bulimia/complicaciones , Trastornos de Alimentación y de la Ingestión de Alimentos/complicaciones , Trastornos de Alimentación y de la Ingestión de Alimentos/epidemiología , Insulina , Insulina Regular Humana
2.
Ann Med Surg (Lond) ; 86(4): 2105-2115, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38576949

RESUMEN

Aim: The authors aimed to conduct a meta-analysis to determine if acetylcholinesterase inhibitors may pose a direct threat, increasing the incidence of fractures in dementia patients. Methods: PubMed, Scopus, and Cochrane Library were searched. Inclusion criteria were any original studies that demonstrated the link between acetylcholinesterase inhibitors and the incidence of fracture in patients with dementia. RevMan(5.4) was used. Results: Seven observational studies were included. The total number of patients included in the acetylcholinesterase inhibitors group is 274 332 and 290 347 in the control group. The pooled analysis showed that the risk of bone fracture was not statistically different between dementia patients who received acetylcholinesterase inhibitors and those who did not receive them (odds ratio=1.44, CI 0.95, 2.19, P=0.09). Subgroup analysis showed no statistically significant difference between dementia patients who took acetylcholinesterase inhibitors, and those who didn't take acetylcholinesterase inhibitors in those more than or equal to 80 years old and those less than 80 years old (P=0.44) and (P=0.34) respectively. However, our results showed a statistically significant association between dementia patients who received acetylcholinesterase inhibitors and decreased fracture risk in those receiving the treatment for more than or less than 2 years (risk ratio=0.48, CI= 0.45, 0.51, P<0.00001) and (risk ratio=0.84, CI 0.70, 0.99, P=0.04), respectively. Conclusion: Our study revealed no role for acetylcholinesterase inhibitors in increasing the risk of fracture compared with controls. Hence, based on our analysis, they might have a protective role against fracture when used for long periods considering their positive action on bone growth and development. Therefore, Acetylcholinesterase inhibitors could be considered a safe option for improving cognitive functions in elderly demented patients without carrying any additional risks.

3.
Artículo en Inglés | MEDLINE | ID: mdl-37962585

RESUMEN

The purpose of this study is to investigate the effect of montelukast on lipopolysaccharide (LPS)-induced pancreatitis. Adult male Wistar rats were divided into 5 groups: normal control, control montelukast, LPS group, and two LPS + montelukast-treated groups. Acute pancreatitis (AP) was induced by a single dose of LPS (6 mg/kg, i.p.), while montelukast was given in two different doses (10 and 20 mg/kg/day) for 3 consecutive days prior to the injection of LPS. AP was demonstrated by significant increases in serum levels of lactate dehydrogenase (LDH) and pancreatic enzymes lipase and amylase. Proinflammatory response activation was evident by elevated serum levels of nitric oxide (NO) and increased pancreatic concentrations of tumor necrosis factor-α (TNF-α), interleukin-1 (IL-1ß), and intercellular adhesion molecule-1 (ICAM-1). The activity of myeloperoxidase (MPO), a neutrophil infiltration marker, has also been increased. Oxidative stress was confirmed by significant increases in the concentrations of lipid peroxides measured as thiobarbituric acid reactive substances (TBARS) and decreases in the concentrations of reduced glutathione (GSH) in the pancreatic tissues of animals treated with LPS. Histological examination confirmed the biochemical alterations. Montelukast treatment reversed all these biochemical indices and histopathological changes that LPS induced. Montelukast reduced the increase in serum levels of lipase, amylase, LDH, total nitrite/nitrate, TNF-α, IL-1ß, and ICAM-1. MPO activities and TBARS concentrations were also suppressed while GSH content was increased in pancreatic tissues. These results show that montelukast may be a beneficial pharmacological agent in protection against LPS-induced oxidative pancreatic injury by inhibiting neutrophil infiltration, counteracting oxidative stress, and suppressing inflammatory mediators.

4.
Chem Biol Interact ; 382: 110649, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37499997

RESUMEN

Gastric ulcer is a serious disease that affects millions of individuals worldwide. Alcohol consumption is a major contributor to the disease pathogenesis and ethanol-induced ulcer in rats closely recapitulates the clinical pathology of ulcer. In this study, rats were pretreated with carvacrol (CAR,50 and 100 mg/kg, orally) 1 h before absolute ethanol administration to induce gastric ulcer. CAR prevented ethanol-induced increases in gastric volume and acidity while restored mucin content. The gastro-protective activity of CAR, particularly the higher dose (100 mg/kg), was further supported by histopathological examination, as manifested by reduced gastric lesions. Interestingly, oxidative stress is linked to early stages of ulcer development and progression. In this study, ethanol administration upregulated the levels of ROS-producing enzymes, NADPH oxidase homologs 1 and 4 (Nox1 and Nox4) and lipid peroxides while depleting the antioxidant defense mechanisms, including GSH, Glutathione Peroxidase (GPX) and catalase. Interestingly, these alterations were significantly ameliorated by CAR pretreatment. Additionally, CAR possesses anti-inflammatory and anti-apoptotic activities. Pretreatment with CAR blunted ethanol-induced increases in inflammatory cytokines (NF-κB and TNF-α) and rectified the apoptosis regulator (Bax/Bcl2 ratio) in gastric tissue. Moreover, the docking simulation of CAR illustrated good fitting and interactions with GPX, Nox1 and TNF-α through the formation of hydrogen and hydrophobic (pi-H) bonds with conservative amino acids, thus, further supporting the anti-inflammatory and antioxidant effects underlying the gastroprotective effects of CAR. In conclusion, this study elucidates, using in silico and in vivo models, that the gastroprotective activity of CAR is attributed, at least in part, to its mucin-secretagogue, antioxidative, anti-inflammatory, and anti-apoptotic mechanisms.


Asunto(s)
Antiulcerosos , Úlcera Gástrica , Ratas , Animales , Antioxidantes/metabolismo , Úlcera Gástrica/inducido químicamente , Úlcera Gástrica/tratamiento farmacológico , Úlcera Gástrica/prevención & control , Factor de Necrosis Tumoral alfa/metabolismo , Úlcera/tratamiento farmacológico , Úlcera/metabolismo , Úlcera/patología , Antiinflamatorios/efectos adversos , Estrés Oxidativo , Antiulcerosos/farmacología , Glutatión Peroxidasa/metabolismo , Etanol/metabolismo , Mucinas/metabolismo , Mucinas/farmacología , Mucinas/uso terapéutico , Mucosa Gástrica
5.
Eur J Pharmacol ; 923: 174910, 2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35339478

RESUMEN

Liver fibrosis is a common chronic hepatic disease. This study was done to examine the effect of pyridoxamine against thioacetamide-induced hepatic fibrosis. Animals were divided into four groups (1) control group; (2) Thioacetamide group (200 mg/kg, i.p.) twice a week for eight weeks; (3) Pyridoxamine-treated group treated with pyridoxamine (100 mg/kg/day, i.p.) for eight weeks; (4) Thioacetamide and pyridoxamine group, in which pyridoxamine was given (100 mg/kg/day, i.p.) during thioacetamide injections. Thioacetamide treatment resulted in hepatic dysfunction manifested by increased serum levels of bilirubin, gamma-glutamyl transferase (GGT), alanine aminotransferase (ALT), and aspartate aminotransferase (AST). Oxidative stress was noted by increased hepatic lipid peroxidation and decreased glutathione (GSH). Increased concentrations of total nitrite/nitrate, advanced glycation end products (AGEs), monocyte chemoattractant protein-1 (MCP-1), tumor necrosis factor-α (TNF-α), transforming growth factor-ß (TGF-ß), matrix metalloproteinases (MMP-2&9) and tissue inhibitor of metalloproteinase-1 (TIMP-1) were noticed in hepatic tissues. Immunostaining sections also revealed overexpression of MMP-2, MMP-9 and collagen IV. Liver fibrosis was confirmed by severe histopathological changes. Pyridoxamine improved the assessed parameters. Moreover, histopathological and immunohistological studies supported the ability of pyridoxamine to reduce liver fibrosis. The findings of the present study provide evidence that pyridoxamine is a novel target for the treatment of liver fibrosis.


Asunto(s)
Metaloproteinasa 2 de la Matriz , Tioacetamida , Animales , Productos Finales de Glicación Avanzada/farmacología , Hígado , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/patología , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasas de la Matriz/metabolismo , Estrés Oxidativo , Piridoxamina/metabolismo , Piridoxamina/farmacología , Piridoxamina/uso terapéutico , Tioacetamida/farmacología , Inhibidor Tisular de Metaloproteinasa-1/metabolismo
6.
Cureus ; 14(1): e21572, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35228931

RESUMEN

Background Cisplatin is a common anticancer drug with potential cardiac and renal toxicities. Rutin, a natural compound present in various medicinal plants, has been shown to protect against chemotherapy-induced toxicities. In this study, we explored the protective effect of rutin against the dose-dependent cardiotoxic effects of cisplatin such as perfusion pressure, histopathologic effect on the myocardium, and oxidative stress in isolated perfused rat hearts. Methodology The cardiotoxic effects of cisplatin were studied at three dosages (1, 7, and 14 mg/L) in isolated perfused rat hearts. The dose-dependent, cisplatin-induced toxic effects on left ventricular pressure (LVP), heart rate (HR), dp/dt (maximum), dp/dt (minimum), perfusion pressure, pressure-time index, contractility index, and duration of diastole were assessed. The effects of cisplatin were measured one minute before perfusion of cisplatin and 60 minutes after perfusion of the isolated rat hearts. Results Cisplatin (1-14 mg/L) caused a significant (p < 0.05) dose-dependent reduction in LVP. The percentage LVP values reduced from 94 ± 9 (control untreated hearts) to 70 ± 6, 69 ± 5, and 65 ± 4 in hearts treated with 1, 7, and 14 mg/L of cisplatin, respectively. Similarly, cisplatin at similar doses caused a marked reduction in the values of dp/dt (maximum), dp/dt (minimum), and pressure-time index in isolated rat hearts. The respective percentage values of these parameters compared to those of untreated hearts were significantly reduced from 101 ± 7 to 72 ± 5, 92 ± 8 to 69 ± 4, and 92 ± 12 to 57 ± 7 in hearts treated with 14 mg/L of cisplatin. Perfusion of hearts with rutin trihydrate (1 µM/L) 10 minutes before administration of cisplatin and throughout the experiment attenuated the detrimental effects of cisplatin on cardiac functions in isolated rat hearts (p < 0.05). In addition, cisplatin-induced degeneration and necrosis of cardiac muscle cells reduced with the concurrent administration of rutin and restored normal heart histology. Moreover, cisplatin-induced reduction in glutathione and increased level of malondialdehyde in the myocardium was reversed by concurrent administration of rutin in isolated rat hearts. Conclusions Cisplatin produced a dose-dependent impairment of several parameters of cardiac function such as LVP, contractility index, and pressure-time index. It caused histopathological alterations in isolated rat hearts. These harmful effects of cisplatin were suppressed by rutin trihydrate, suggesting the potential protective effects of rutin against cisplatin-induced cardiotoxicity. Rutin trihydrate also improved the reduced glutathione contents and suppressed the malondialdehyde contents in the cardiac tissue of isolated rat hearts, suggesting that the observed beneficial effects of rutin trihydrate in this study could be related to its antioxidant properties.

7.
Drug Chem Toxicol ; 45(3): 1364-1372, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-33059470

RESUMEN

The purpose of this research was to evaluate the efficacy of carsil (CAR) either alone or in combination with α-tocopherol (α-TOCO) and/or turmeric (TUMR) against tetrachloromethane (TCM)-induced cardiomyocyte injury in rats. Administration of CAR either alone or in combination with α-TOCO and/or TUMR post-TCM injection, significantly mitigated the increases in serum troponin T, creatine kinase-MB (CK-MB) as well as interleukin-6 (IL-6), interferon γ (IFN-γ), tumor necrosis factor-α (TNF-α), C-reactive protein (CRP). They also decline the elevation of caspase-3, vascular endothelial growth factor (VEGF) protein expression as well as DNA damage in cardiac tissues induced by TCM. The biochemical results were confirmed by histopathological investigation. Conclusion: The combination of the three antioxidants showed greater cardioprotective potential, compared to individual drugs. Therefore, this combination may be recommended as a complementary therapy to antagonize cardiac injury induced by different insults.


Asunto(s)
Antioxidantes , Tetracloruro de Carbono , Animales , Antioxidantes/farmacología , Corazón , Ratas , Factor de Necrosis Tumoral alfa , Factor A de Crecimiento Endotelial Vascular/farmacología
8.
Sci Prog ; 104(2): 368504211011839, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33940981

RESUMEN

The current article was designed to assess the role of chitosan nanoparticles (CNPs) in the management of hepatic injury induced by the hepatocarcinogen 2-nitropropane (2-NP). Rats were divided into three groups. The first group served as a control, the second group was injected with 2-NP, while the third group was treated with CNPs 1 h before 2-NP injection every other day for 4 weeks. The 2-NP injection upregulated serum AST and ALT activities, as well as hepatic TNF- α, IL-6, and MDA levels and the expression of vascular endothelial growth factor (VEGF) and caspase-3, whereas GSH contents and SOD activity were decreased. Immunohistochemistry investigations revealed that the hepatic protein expression of collagen I, inducible nitric oxide synthetase, proliferating cell nuclear antigen, cluster of differentiation, and p53 were upregulated. hematoxylin and eosin (H&E) and Masson's trichrome stains supported the previous parameters, and CNPs ameliorated most of the previous biochemical parameters. CNPs achieved promising results in the limitation of 2-NP hepatotoxicity.


Asunto(s)
Quitosano , Nanopartículas , Animales , Antígenos CD/metabolismo , Antígenos de Diferenciación Mielomonocítica/metabolismo , Quitosano/metabolismo , Quitosano/farmacología , Quitosano/uso terapéutico , Hígado , Nanopartículas/uso terapéutico , Nanopartículas/toxicidad , Nitroparafinas , Antígeno Nuclear de Célula en Proliferación/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Propano/análogos & derivados , Ratas , Factor de Necrosis Tumoral alfa/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
9.
Life Sci ; 277: 119512, 2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-33862116

RESUMEN

AIM: Tamoxifen (TAMO) is a chemotherapeutic drug used for the treatment of breast cancer. Nevertheless, there is a lack of information available in regarding its nephrotoxicity. The purpose of this work was to investigate the impact of cyanocobalamin (COB) and/or calcitriol (CAL) injections on TAMO-induced nephrotoxicity. MAIN METHODS: Animals were allocated into five groups as follows: normal control group; TAMO (45 mg/kg) administered group; TAMO+COB (6mg/kg, i.p) treated group; TAMO+CAL (0.3 µg/kg, i.p) treated group; TAMO+COB+CAL combination groups. KEY FINDINGS: Renal injury induced by TAMO was confirmed by the alteration in renal function parameters in the serum (urea and creatinine), as well as in the urine (creatinine clearance, total protein and albumin). These results were supported by histopathological examination. Upregulation of renal inflammatory parameters; tumor necrosis factor (TNF)-α, interleukin (IL)-6, C-reactive protein (CRP); and transforming growth factor (TGF)-ß1 as well as in protein expression of nuclear factor-kappa B (NF-κB) and cleaved caspase-3 were observed to a greater extent in the TAMO-treated rats compared with the control. Renal fibrosis was also evidenced by a elevation in renal L-hydroxyproline level as well as by histomorphological collagen deposition in TAMO-treated groups compared to the control group. Administration of COB and/or CAL concurrently with TAMO significantly ameliorated the deviation in the above-studied parameters and improved the histopathological renal picture. SIGNIFICANCE: Inhibition of NF-κß-mediated inflammation and caspase-3-induced apoptosis are possible renoprotective mechanisms of COB and/or CAL against TAMO nephrotoxicity, which was more noticeable in the TAMO group treated with the combination of the two vitamins in question.


Asunto(s)
Calcitriol/farmacología , Tamoxifeno/efectos adversos , Vitamina B 12/farmacología , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/tratamiento farmacológico , Animales , Apoptosis , Nitrógeno de la Urea Sanguínea , Calcitriol/metabolismo , Caspasa 3/metabolismo , Creatinina/sangre , Femenino , Riñón/patología , Enfermedades Renales/tratamiento farmacológico , Enfermedades Renales/metabolismo , Pruebas de Función Renal , FN-kappa B/metabolismo , Nefritis/metabolismo , Ratas , Ratas Wistar , Transducción de Señal/efectos de los fármacos , Tamoxifeno/farmacología , Factor de Necrosis Tumoral alfa/metabolismo , Vitamina B 12/metabolismo
10.
Heart Fail Rev ; 26(6): 1495-1504, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-32314086

RESUMEN

The finding of "glycogen synthase kinase-3" (GSK-3) was initially identified as a protein kinase that phosphorylate and inhibited glycogen synthase. However, it was soon discovered that GSK-3 also has significant impact in regulation of truly astonishing number of critical intracellular signaling pathways ranging from regulation of cell growth, neurology, heart failure, diabetes, aging, inflammation, and cancer. Recent studies have validated the feasibility of targeting GSK-3 for its vital therapeutic potential to maintain normal myocardial homeostasis, conversely, its loss is incompatible with life as it can abrupt cell cycle and endorse fatal cardiomyopathy. The current study focuses on its expanding therapeutic action in myocardial tissue, concentrating primarily on its role in diabetes-associated cardiac complication, apoptosis and metabolism, heart failure, cardiac hypertrophy, and myocardial infarction. The current report also includes the finding of our previous investigation that has shown the impact of GSK-3ß inhibitor against diabetes-associated myocardial injury and experimentally induced myocardial infarction. We have also discussed some recent identified GSK-3ß inhibitors for their cardio-protective potential. The crosstalk of various underlying mechanisms that highlight the significant role of GSK-3ß in myocardial pathophysiology have been discussed in the present report. For these literatures, we will rely profoundly on our previous studies and those of others to reconcile some of the deceptive contradictions in the literature.


Asunto(s)
Glucógeno Sintasa Quinasa 3 , Infarto del Miocardio , Cardiomegalia , Glucógeno Sintasa Quinasa 3 beta , Humanos , Miocardio
11.
Dose Response ; 18(3): 1559325820949797, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32922227

RESUMEN

Hypoxia may lead to inflammatory responses by numerous signaling pathways. This investigation intended to inspect the defensive role of Quercetin (Quer) and/ or Melatonin (Mel) against reno toxicity induced by Sodium nitrite (Sod ntr). Sod ntr injection significantly decreased blood hemoglobin concentration (Hb) with a concurrent increase in serum tumor necrosis factor- α, interleukin-6, C-reactive protein, creatinine, and urea levels. Over protein-expression of vascular endothelial growth factor and heat shock, protein-70 and mRNA of HIF-1α were also observed. Pretreatment of the Sod ntr- injected rats with the aforementioned antioxidants; either alone or together significantly improved such parameters. Histopathological examination reinforced the previous results. It was concluded that the combined administration of Quer and Mel may be useful as a potential therapy against renal injury induced by Sod ntr. HIF-1α and HSP-70 are implicated in the induction of hypoxia and its treatment.

12.
Dig Dis Sci ; 65(12): 3583-3591, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32088797

RESUMEN

BACKGROUND: Acute pancreatitis (AP) is a sudden inflammation of the pancreas that may be life-threatening disease with high mortality rates, particularly in the presence of systemic inflammatory response and multiple organ failure. Oxidative stress has been shown to be involved in the pathophysiology of acute pancreatitis. AIM: This study is designed to investigate the possible effect of mesna on an experimental model of cerulein-induced acute pancreatitis. METHODS: Animals were divided into five groups: Group 1 served as a control group given the saline; group II (mesna group) received mesna at a dose of (100 mg/kg per dose, i.p.) four times; group III (acute pancreatitis group) received cerulein at a dose of (20 µg/kg/dose, s.c.) four times with 1-h intervals; group VI, cerulein + mesna, was treated with mesna at a dose of (100 mg/kg, i.p.) 15 min before each cerulein injection. RESULTS: Animals with acute pancreatitis showed elevated serum amylase and lipase levels. Biochemical parameters showed increased pancreatic tumor necrosis factors-α (TNF-α) and interleukin-1ß (IL-1ß) levels. A disturbance in oxidative stress markers was evident by elevated pancreatic lipid peroxides (TBARS) and decline in pancreatic antioxidants' concentrations including reduced glutathione (GSH); superoxide dismutase (SOD); and glutathione peroxidase (GSH-Px). Histological examination confirmed pancreatic injury. Pre-treatment with mesna was able to abolish the changes in pancreatic enzymes, oxidative stress markers (TBARS, SOD, GSH and GSH-Px), pancreatic inflammatory markers (TNF-α, IL-1ß) as well as histological changes. CONCLUSIONS: Mesna mitigates AP by alleviating pancreatic oxidative stress damage and inhibiting inflammation.


Asunto(s)
Ceruletida/farmacología , Mesna , Estrés Oxidativo/efectos de los fármacos , Páncreas , Pancreatitis , Animales , Antioxidantes/análisis , Colagogos y Coleréticos/farmacología , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Esquema de Medicación , Interleucina-1beta/sangre , Mesna/metabolismo , Mesna/farmacología , Páncreas/efectos de los fármacos , Páncreas/enzimología , Páncreas/patología , Pancreatitis/inducido químicamente , Pancreatitis/metabolismo , Pancreatitis/prevención & control , Sustancias Protectoras/metabolismo , Sustancias Protectoras/farmacología , Ratas , Resultado del Tratamiento , Factor de Necrosis Tumoral alfa/sangre
14.
Environ Sci Pollut Res Int ; 27(16): 19142-19150, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31055753

RESUMEN

Although titanium dioxide nanoparticles (TDO-ns) are extensively used in the food, medicine, and cosmetic industries, discussions about the possible hazards of nanomaterials are just beginning to emerge. This study aimed to detect the inflammatory stress, oxidative stress, and apoptotic cell death induced in the livers of rats exposed to TDO-ns (600 mg/kg, particle size ≤ 100 nm). Furthermore, the modulation of these toxic effects by two potent naturally occurring antioxidants, carnosine (Carno) or melatonin (Melato), was evaluated. The co-administration of carnosine or melatonin to rats intoxicated with TDO-ns significantly attenuated the increases in serum tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), C-reactive protein (CRP), immunoglobulin G (IgG), vascular endothelial growth factor (VEGF), nitric oxide (NO), and alanine aminotransferase (ALT) levels. The two agents markedly ameliorated hepatic DNA damage and the alterations in hepatic malondialdehyde (MDA), glutathione (GSH), cytochrome P450, caspase-3, total phospholipid, phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, sphingomyelin, and triglyceride (TG) levels. These results support the use of Carno or Melato as prophylactic agents against TDO-ns-induced liver damage.


Asunto(s)
Carnosina , Melatonina , Nanopartículas , Animales , Antioxidantes , Apoptosis , Daño del ADN , Glutatión , Incidencia , Inflamación , Hígado , Estrés Oxidativo , Ratas , Titanio , Factor A de Crecimiento Endotelial Vascular
15.
Pharmacol Rep ; 71(6): 1025-1033, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31590115

RESUMEN

BACKGROUND: Cisplatin is a major anti-cancer drug commonly used in the treatment of various cancers; nevertheless, the associated hepatotoxicity has limited its clinical application. The aim of this investigation is to test the impact of betaine supplementation on cisplatin-induced hepatotoxicity. METHODS: Animals were allocated into four groups; normal control group (control betaine group (250 mg/kg/day, po for twenty six days), cisplatin group (single injection of 7 mg/kg, ip) and betaine + cisplatin group (received betaine for twenty one days before cisplatin injection and daily after cisplatin for five days). RESULTS: Cisplatin-induced liver injury was confirmed by increased alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels. Cisplatin elevated lipid peroxides, and reduced the concentrations of reduced glutathione (GSH), glutathione peroxidase (GSH-Px), catalase and superoxide dismutase (SOD) in hepatic tissues. Cisplatin increased the inflammatory mediators; nitrite and tumor necrosis factor-α (TNF- α) in hepatic tissues. Increased gene expressions of the apoptotic marker, caspase-3 and nuclear factor-kappa B (NF-κB) were observed in hepatic tissues of cisplatin-treated rats. All these changes were further confirmed by histopathological findings in cisplatin group. Pre-treatment with betaine reduced serum aminotransferases (ALT and AST), and lowered hepatic concentrations of lipid peroxides, nitrite and TNF-α while increased SOD, GSH, catalase, and GSH-Px concentrations. Moreover, the histological and immunohistochemical changes were improved. CONCLUSION: The suppression of NF-κß-mediated inflammation, oxidative stress, and caspase-3 induced apoptosis are possible mechanisms to the observed hepatoprotective effect of betaine.


Asunto(s)
Betaína/farmacología , Caspasa 3/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Cisplatino/farmacología , FN-kappa B/antagonistas & inhibidores , Estrés Oxidativo/fisiología , Animales , Aspartato Aminotransferasas/sangre , Aspartato Aminotransferasas/metabolismo , Cisplatino/toxicidad , Interacciones Farmacológicas , Glutatión/metabolismo , Glutatión Peroxidasa/metabolismo , Hígado/efectos de los fármacos , Hígado/lesiones , Hígado/patología , Masculino , FN-kappa B/metabolismo , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Endogámicas WF , Superóxido Dismutasa/metabolismo , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo
16.
Dose Response ; 16(4): 1559325818812188, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30559635

RESUMEN

Titanium dioxide nanoparticles (TiO2-NPs) are extensively used in a wide range of applications; however, many reports have investigated their nanotoxicological effect at the molecular level either in vitro or in vivo systems. The defensive roles of quercetin (Qur) or idebenone (Id) against the hepatotoxicity induced by TiO2-NPs were evaluated in the current study. The results showed that the coadministration of Qur or Id to rats intoxicated with TiO2-NPs markedly ameliorated the elevation in hepatic malondialdehyde (MDA), serum alanine amino-transferase (ALT), glucose, tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), immunoglobin G (IgG), and C-reactive protein (CRP) levels compared to their levels in TiO2-NPs-treated rats. The aforementioned antioxidants also effectively modulated the changes in the levels of serum vascular endothelial growth factor (VEGF), nitric oxide (NO), hepatic DNA breakage, caspase-3, and inhibition of drug metabolizing enzymes (cytochrome P450s; CYP4502E12E1) in rat livers induced by TiO2-NPs toxicity. The histopathological examination of the liver section showed that TiO2-NPs caused severe degeneration of most hepatocytes with an increase in collagen in the portal region, while treatment with the antioxidants in question improved liver architecture. These outcomes supported the use of Qur and Id as protective agents against the hepatotoxicity induced by TiO2-NPs and other hepatotoxic drugs.

17.
Ultrastruct Pathol ; 42(5): 430-439, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30285525

RESUMEN

AIM: Focal segmental glomerulosclerosis (FSGS) is a common progressive chronic renal disease. Podocyte injury and loss are the postulated pivotal events that trigger FSGS. In this study, the authors aim to examine the evolution of FSGS in murine models histologically, ultrastructurally and immunohistochemically with special emphasis on podocytes and parietal epithelial cells (PECs). MATERIAL AND METHODS: FSGS resembling primary FSGS in humans was initiated in Wistar rats using intravenous Adriamycin injections. Blood and urine analysis were performed at 0, 8, and 12 weeks. Both the control kidneys and the test kidneys were harvested at 8 and 12 weeks, examined histologically and ultrastructurally and the findings correlated with the glomerular expression of immunostains specific for podocytes (WT-1) and for activated PECs (CD44). RESULTS: FSGS developed in both 8 and 12 weeks test groups showing progressive proteinuria, podocytopathy and segmental glomerular scarring. There was a decrease in the glomerular expression of WT-1 with a concurrent increase in the glomerular expression of CD44, indicating podocyte loss with synchronous increase in activated PECs. The evolving FSGS correlated negatively with podocytes and positively with activated PECs. CONCLUSION: Our study shows that with podocyte injury there is podocyte effacement and loss, proteinuria, glomerular segmental adhesion and scarring, all culminating in FSGS. In addition, there is activation, hyperplasia and hypertrophy of PECs. This demonstrates that both podocyte loss and PEC activation promote FSGS. Our findings are consistent with recent investigations. More studies are required to further understand the role of these cells in the evolution of FSGS and subsequently introduce new targeted treatment modalities.


Asunto(s)
Glomeruloesclerosis Focal y Segmentaria/patología , Glomérulos Renales/patología , Glomérulos Renales/ultraestructura , Animales , Biomarcadores/análisis , Modelos Animales de Enfermedad , Glomeruloesclerosis Focal y Segmentaria/metabolismo , Receptores de Hialuranos/biosíntesis , Inmunohistoquímica , Glomérulos Renales/metabolismo , Podocitos/metabolismo , Podocitos/patología , Podocitos/ultraestructura , Ratas , Ratas Wistar , Proteínas WT1/biosíntesis
19.
J Biochem Mol Toxicol ; 32(3): e22040, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29469982

RESUMEN

The alleviative effects of two antioxidants, carnosine (Car) and melatonin (Mel), against titanium dioxide nanoparticles (TiO2 -NPs) toxicity-induced oxidative and inflammatory renal damage were examined in rats. Administration of these antioxidants along with TiO2 -NPs effectively reduced serum urea, uric acid, creatinine, glucose, tumor necrosis factor-α, interleukin-6, C-reactive protein, immunoglobulin G, vascular endothelial growth factor, and nitric oxide, as well as a significant amelioration of the decrease in glutathione levels in renal tissue was observed, compared to those in rats treated with TiO2 -NPs alone. The renoprotective properties of the antioxidants were confirmed by reduced intensity of renal damage as demonstrated by histological findings. In conclusion, Car and Mel play protective roles against TiO2 -NPs-induced renal inflammation and oxidative injury, likely due to their antioxidant and anti-inflammatory properties.


Asunto(s)
Carnosina/farmacología , Sobredosis de Droga , Enfermedades Renales , Melatonina/farmacología , Nanopartículas/efectos adversos , Titanio/efectos adversos , Animales , Sobredosis de Droga/metabolismo , Sobredosis de Droga/patología , Sobredosis de Droga/prevención & control , Enfermedades Renales/inducido químicamente , Enfermedades Renales/metabolismo , Enfermedades Renales/patología , Enfermedades Renales/prevención & control , Masculino , Ratas , Ratas Wistar , Titanio/farmacología
20.
Exp Toxicol Pathol ; 67(2): 133-41, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25488130

RESUMEN

Cisplatin is one of the most potent chemotherapeutic antitumor drugs used in the treatment of a wide range of solid tumors. Its primary dose-limiting side effect is nephrotoxicity. This study aims to investigate the effect of betaine supplementation on cisplatin-induced nephrotoxicity. A single intraperitoneal injection of cisplatin (5mg/kg) deteriorated the kidney functions as reflected by elevated blood urea nitrogen and serum creatinine levels. Oxidative/nitrosative stress was evident in cisplatin group by increased renal thiobarbituric acid-reactive substances (TBARS), an indicator of lipid peroxidation, reduced renal total antioxidant status and increased renal nitrite concentration. Cisplatin resulted in a decline in the concentrations of reduced glutathione, glutathione peroxidase, catalase, and superoxide dismutase in renal tissues. Renal tumor necrosis factor-α (TNF-α) was also elevated. Expressions of nuclear factor-kappa B (NF-κB) and caspase-3 were up-regulated in renal tissues as indicated by immunohistochemical analysis. Histopathological changes were observed in cisplatin group. Betaine supplementation (250 mg/kg/day) orally via gavage for 21 days prior to cisplatin injection was able to protect against deterioration in kidney function, abrogate the decline in antioxidants enzymes and suppressed the increase in TBARS, nitrite and TNF-α concentrations. Moreover, betaine inhibited NF-κB and caspase-3 activation and improved the histological changes induced by cisplatin. Thus, the present study demonstrated the renoprotective nature of betaine by attenuating the pro-inflammatory and apoptotic mediators and improving antioxidant competence in kidney tissues of cisplatin treated rats. Betaine could be a beneficial dietary supplement to attenuate cisplatin nephrotoxicity.


Asunto(s)
Antineoplásicos/toxicidad , Apoptosis/efectos de los fármacos , Betaína/uso terapéutico , Cisplatino/toxicidad , Enfermedades Renales/prevención & control , Riñón/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Animales , Betaína/administración & dosificación , Suplementos Dietéticos , Inmunohistoquímica , Riñón/inmunología , Riñón/metabolismo , Riñón/patología , Enfermedades Renales/inducido químicamente , Enfermedades Renales/inmunología , Enfermedades Renales/metabolismo , Pruebas de Función Renal , Masculino , Nitratos/metabolismo , Nitritos/metabolismo , Nitrosación , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...